(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(0) → s(0)
f(s(0)) → s(0)
f(s(s(x))) → f(f(s(x)))
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(0') → s(0')
f(s(0')) → s(0')
f(s(s(x))) → f(f(s(x)))
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
f(0') → s(0')
f(s(0')) → s(0')
f(s(s(x))) → f(f(s(x)))
Types:
f :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f
(6) Obligation:
Innermost TRS:
Rules:
f(
0') →
s(
0')
f(
s(
0')) →
s(
0')
f(
s(
s(
x))) →
f(
f(
s(
x)))
Types:
f :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
f
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
f(
gen_0':s2_0(
+(
1,
n4_0))) →
gen_0':s2_0(
1), rt ∈ Ω(1 + n4
0)
Induction Base:
f(gen_0':s2_0(+(1, 0))) →RΩ(1)
s(0')
Induction Step:
f(gen_0':s2_0(+(1, +(n4_0, 1)))) →RΩ(1)
f(f(s(gen_0':s2_0(n4_0)))) →IH
f(gen_0':s2_0(1)) →RΩ(1)
s(0')
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
f(
0') →
s(
0')
f(
s(
0')) →
s(
0')
f(
s(
s(
x))) →
f(
f(
s(
x)))
Types:
f :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
f(gen_0':s2_0(+(1, n4_0))) → gen_0':s2_0(1), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(10) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_0':s2_0(+(1, n4_0))) → gen_0':s2_0(1), rt ∈ Ω(1 + n40)
(11) BOUNDS(n^1, INF)
(12) Obligation:
Innermost TRS:
Rules:
f(
0') →
s(
0')
f(
s(
0')) →
s(
0')
f(
s(
s(
x))) →
f(
f(
s(
x)))
Types:
f :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
f(gen_0':s2_0(+(1, n4_0))) → gen_0':s2_0(1), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(13) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_0':s2_0(+(1, n4_0))) → gen_0':s2_0(1), rt ∈ Ω(1 + n40)
(14) BOUNDS(n^1, INF)